Splitting the Unsupervised and Supervised Components of Semi-Supervised Learning
نویسندگان
چکیده
In this paper we investigate techniques for semi-supervised learning that split their unsupervised and supervised components — that is, an initial unsupervised phase is followed by a supervised learning phase. We first analyze the relative value of labeled and unlabeled data. We then present methods that perform “split” semi-supervised learning and show promising empirical results.
منابع مشابه
Minimum Density Hyperplanes
Associating distinct groups of objects (clusters) with contiguous regions of high probability density (high-density clusters), is a central assumption in statistical and machine learning approaches for the classification of unlabelled data. In unsupervised classification this cluster definition underlies a nonparametric approach known as density clustering. In semi-supervised classification, cl...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملPartially-supervised learning in Independent Factor Analysis
Independent Factor Analysis (IFA) is used to recover latent components (or sources) from their linear observed mixtures within an unsupervised learning framework. Both the mixing process and the source densities are learned from the observed data. The sources are assumed to be mutually independent and distributed according to a mixture of Gaussians. This paper investigates the possibility of in...
متن کاملA Survey on Semi-Supervised Learning Techniques
Semi-supervised learning is a learning standard which deals with the study of how computers and natural systems such as human beings acquire knowledge in the presence of both labeled and unlabeled data. Semi–supervised learning based methods are preferred when compared to the supervised and unsupervised learning because of the improved performance shown by the semi-supervised approaches in the ...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کامل